Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Iris is one of the most widely used biometric modalities because of its uniqueness, high matching performance, and inherently secure nature. Iris segmentation is an essential preliminary step for iris-based biometric authentication. The authentication accuracy is directly connected with the iris segmentation accuracy. In the last few years, deep-learning-based iris segmentation methodologies have increasingly been adopted because of their ability to handle challenging segmentation tasks and their advantages over traditional segmentation techniques. However, the biggest challenge to the biometric community is the scarcity of open-source resources for adoption for application and reproducibility. This review provides a comprehensive examination of available open-source iris segmentation resources, including datasets, algorithms, and tools. In the process, we designed three U-Net and U-Net++ architecture-influenced segmentation algorithms as standard benchmarks, trained them on a large composite dataset (>45K samples), and created 1K manually segmented ground truth masks. Overall, eleven state-of-the-art algorithms were benchmarked against five datasets encompassing multiple sensors, environmental conditions, demography, and illumination. This assessment highlights the strengths, limitations, and practical implications of each method and identifies gaps that future studies should address to improve segmentation accuracy and robustness. To foster future research, all resources developed during this work would be made publicly available.more » « less
-
In this paper, we evaluate the uniqueness of a hypothetical iris recognition system that relies upon a nonlinear mapping of iris data into a space of Gaussian codewords with independent components. Given the new data representation, we develop and apply a sphere packing bound for Gaussian codewords and a bound similar to Daugman’s to characterize the maximum iris population as a function of the relative entropy between Gaussian codewords of distinct iris classes. As a potential theoretical approach leading toward the realization of the hypothetical mapping, we work with the auto-regressive model fitted into iris data, after some data manipulation and preprocessing. The distance between a pair of codewords is measured in terms of the relative entropy (log-likelihood ratio statistic is an alternative) between distributions of codewords, which is also interpreted as a measure of iris quality. The new approach to iris uniqueness is illustrated using two toy examples involving two small datasets of iris images. For both datasets, the maximum sustainable population is presented as a function of image quality expressed in terms of relative entropy. Although the auto-regressive model may not be the best model for iris data, it lays the theoretical framework for the development of a high-performance iris recognition system utilizing a nonlinear mapping from the space of iris data to the space of Gaussian codewords with independent components.more » « less
-
null (Ed.)The dilation of the pupil and it’s variation between a mated pair of irides has been found to be an important factor in the performance of iris recognition systems. Studies on adult irides indicated significant impact of dilation on iris recognition performance at different ages. However, the results of adults may not necessarily translate to children. This study analyzes dilation as a factor of age and over time in children, from data collected from same 209 subjects in the age group of four to 11 years at enrollment, longitudinally over three years spaced by six months. The performance of iris recognition is also analyzed in presence of dilation variation.more » « less
-
null (Ed.)Speaker recognition as a biometric modality is on the rise in the consumer marketplace for banking, online services, and personal assistant services with a potential for wider application areas. Most current applications involve adults. One of the biggest challenges in speaker recognition for children is the change in the voice properties as a child age. This work proposes a baseline longitudinal dataset from the same 30 children in the age group of 4 to 14 years over a time frame of 2.5 years and evaluates speaker recognition performance in children with the available speaker recognition technology.more » « less
An official website of the United States government

Full Text Available